Broadening and Building
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We humans have potential to self-actualize far beyond our immediate or
even our own objectives, and our overall life experience is an open-book of
this endeavour. However, such sacrifice is not as common in the world of
deep reinforcement learning agents. Standard reinforcement learning agents
practically embody the behavioralist fear-driven, classically-conditioned inter-
pretation of behavior. Survival-oriented emotions like fear are certainly useful
in momentarily narrowing focus to motivate brief behavioral responses. How-
ever, the spectrum of human affective experience is complemented by positive
emotions such as curiosity, joy, and love, which though rarely directly serving
any explicit objective, actually broaden and build on social, cognitive, and be-
havioral skills for many potential needs. I apply the Broaden and Build theory
of positive emotions to the design and training of a novel deep reinforcement
learning architecture Affective RL (AffectR) situated in a nonstationary life-
long, multimodal, multiagent, mixed-mode setting. The population is placed
in progressively more human-like environments culminating in a photorealistic
simulator where interventions are made when necessary to help each AffectR
agent realize its full potential. Code: tinyurl.com/affectr

Motivation and Background

Emotion colors rich variation into the perceptual experience. It compliments de-
liberate rational yet bounded thought with a context-rich representation that weighs
over indescribably many factors in guiding adaptive cognition and behavior, and the
instinctive and learned context it carries stitches unifying threads into the social fab-
ric of families, communities, and larger populations. What motivates farsighted and
altruistic endeavor? The very term ”motivate” almost seems to contradict the latter
objective, yet in the dumpster of ”intrinsic motivation”, we find a range of emotions
that promote unselfish activity. Consider: We feel the love of friends and family mem-
bers. We’ve witnessed the compassion of healthcare workers during the pandemic.
We read the joy of science in between the lines of academic journals, and many other
touching emotions exert strong effects on our own lives.

Note that emotions motivating meaningful, self-actualizing behavior are not short-
sighted survival-oriented ones. Escaping the hedonic treadmill, positive emotions take
a broader, allocentric paradigm to behavior. Curiosity rarely has a known goal, yet it
motivates open-ended discovery of useful skills and knowledge. Unselfish love delib-
erately places the individual’s behavioral objective beyond self but inescapably reaps
improved physical, mental, and social well-being. The broaden and build theory
of positive emotion emphasizes that such positive emotions, though rarely directly
serving any immediate survival oriented objective, actually facilitate broadening an
individual’s experience and building their social, cognitive, and behavioral skills for
many potential needs.

Can this principle be applied to problem solving in general? I consider a subset of
problem solving — reinforcement learning (RL) — where in the multiagent model-based
deep RL setting, comparisons may reasonably be drawn between human affective ex-
perience and heuristics on RL agents. Formally, reinforcement learning models prob-
lem solving as a Markov decision process (5, A, P,, R,) where S is the state space, A
is the action space, P,(s, ') is the probability that the environment will transition to
state s’ € S when action a € A is taken at state s € S, and R,(s,s’) is the reward
received from a state-action trajectory s, a,s’ and an accompanying learned action
selection policy 7(als). Model-free approaches use some estimate of reward such as
a Q-function of state and action (s, a) while model-based RL learns a world-model
such as f(s'|s,a) or f(s'|s) which it exploits to select actions optimally. These ap-
proaches are not mutually exclusive, and self-supervised, information-theoretic, and
intrinsically motivated RL approaches exist which train using internally generated
reward signals such as prediction, action entropy, and empowerment. In partially
observable domains, the agent only receives a restricted observation o of the envi-
ronment state s. Multiagent RL extends the classical agent-environment interaction
process to many agents, often simultaneously learning and without a common obser-
vation or even objective as in the mixed-mode and competitive settings. Finally, deep
RL uses neural networks to approximate an agent’s Q-function, policy, world model,
and other trainable functions.

RL systems leverage powerful conditioning techniques to optimize decision pro-
cesses, yet their single objective paradigm contrasts to the motivational riches of
human affective experience. Affect (colloquially, feeling or emotion) is often consid-
ered along three principal dimensions: arousal, valency, and motivational intensity.
Arousal may be objectively measured by the degree of an individual’s sympathetic
axis activation, and in healthy individuals, increased arousal means greater poten-
tial to integrate information and respond appropriately. Valency measures individu-
als’ subjective positive negative evaluation of a situation and is associated with the
physiological dimension of pleasure. Motivational intensity describes an individual’s
subjective propensity to meaningfully act. I instill related characteristics in a novel

\RL system Affective RL (AffectR).
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Figure 2.Select multiagent PettingZoo environments. Some of these environ-

ments are neither purely competitive nor cooperative but involve mixed-mode social
interaction.

Methods

Each AffectR agent is composed from an encoder fe,. : h,0 — h, processor
fproe + b — h, and decoder fs. : h — a module. Internally, each module utilizes
a residual dot-product attention mechanism to manipulate information. The encoder
assigns partially learned embedding keys to each observation channel, and recurrently
queries the observation space to update its representation. The processor performs
self-attention similarly. The decoder extracts the agent’s outputs with the same em-
bedding keys as the encoder. These modules update asynchronously according to
learned computation activity hyperparameters {0cne, Oproc, Odec} € 0. After running at
time tP"¢Y, each module waits until its respective timeout has elapsed t = tP"¥ 4 §.
before proceeding to apply its output. This is differentiably implemented as:

h = O(t = (12" + benc)) fenc(h, 0) + (1 = Ot — ($2" + Genc)) )

h < O(t — (thoc + Oproc)) fproc(l) + (1 = ©O(t = (11750 + Oproc)) )P
a < @(t - (tszv + 6d66))fd60(h) + (1 - @(t - (tzzv + 6d66)))a

where ©(7) = o(f7) and each respective timeout updates by 7" < O(t— (""" +
ONt+ (1 —O(t — (tP" +4.)))tPrev.

Agents receive egocentric vision V;, local area text T}, loss information £;, hyper-
parameters 6;, and the previous action a; as input. Agents output predicted vision
V;de, predicted text Tt’ﬁd7 predicted loss information Effld, new hyperparameters
0.1, and the environment action a;;1 to be taken. Predicted vision, text, and loss
information are subtracted against that actually given by the environment.

V, = ‘/;ext _ V;/I”"ed

T, = Ttemt _ TtpT ed

Loss is increased by the overall previous predictive error and activity levels and is
supplied as a multidimensional tensor including individual components £§{;, and the
weighted sum L% of those components.

L7 = [1e; reduce_sum(V;); reduce_sum/(T}); reduce_sum(L—1);

Ot — (12" + denc)); Ot — (5760 + Iproc) ); Ot — (tgee + duec)); €1+ LiGir]

L, = Lot — crred

Agents run batch gradient descent to minimize weighted loss sum on-policy af-
ter every 64 timesteps. Gradients are only allowed to flow through 16 computation
steps. This means a staggered buffer of 80 timesteps are actually required to differen-
tiate through 16 for 64 full frames. Unless specified, weights are not shared between
agents. The environment action output layer changes with changing environments
for individual agents.

This work is an active project and the AffectR architecture is still being imple-
mented. From pretraining to multiagent simulation, agents and population will train
in progressively more complex environments. Several simulator environments have al-
ready identified for training including Atari games (Figure 1), PettingZoo simulations
(Figure 2), and ThreeDWorld scenes (Figure 3). Importantly, these environments are
amenable to both quantitative metrics and qualitative human observation introduc-
ing the possibility of directly interacting with agents. I plan to conduct qualitative
perturbation analysis on the agent and population level behaviors by both directly
controlling a simulator agent and communicating to agents with the text modality.

The text modality represents a general communication channel that physically
neighboring agents can interact through. I plan to pretraining agents individually
on English corpera before introducing them to the AffectR population. Since agents
are pretrained using natural language, I also plan to personally interact with AffectR
individuals over their development to qualitatively asses their behavioral, cognitive,
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Figure 3. Test scene from Three3World. Reused within the BSD
2-clause license from
https://github.com/threedworld-mit/tdw/blob/master /Docume
ntation/getting started.md.

and personality characteristics.
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Discussion

.

This work draws many parallels between affective psychology and multi-agent
deep reinforcement learning. Valency is expressed by the multidimensional loss sig-
nal £. Encoder and processor activity rates may compare to arousal while processor
and decoder activity rates liken to motivational intensity. Future developments will
continue to entertain similarities between the two fields of study and apply the in-
trinsic motivations so instrumental to meaningful human endeavour to powerful yet
socially-aware affective computing systems.

This work is personally funded and intrinsically motivated.




