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Author Note:

This paper was written to fulfill the “Lifelong Learning Exercise” requirement of CSE 4314

towards completing a Bachelor’s degree in Computer Science. I selected the keynote address

“Safety, Complexity, AI, and Automated Driving Holistic Perspectives on Safety Assurance”

which was presented virtually 12:00-12:50 UTC 20 August 2021 by Fraunhofer Institute for

Cognitive Systems IKS research director Dr. Simon Burton as part of the AI Safety 2021

Workshop and posted on the workshop’s website https://www.aisafetyw.org/.1 The AI Safety

2021 workshop is sponsored by the Partnership on AI, the Assuring Autonomy International

Programme, the Centre for the Study of Existential Risk, and the CEA (Commissariat à l'énergie

atomique et aux énergies alternatives) each representing diverse and interdisciplinary sectors of

research, business, and government.1

The following work aims to communicate an important yet not widely-appreciated aspect

of artificial intelligence. The author plans to express many of its points into section 5 “Safety” of

an in-progress personal paper “Full Stack Artificial Intelligence: The Node Neural Network,

AExperience, VNCEnv, and Computatrum”2 and would greatly appreciate any criticism of his

conclusions on AI Safety from the student grader or Dr. Cross.
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AI Complexity, Autonomy, Criticality, … but Safety?

The endless evolution of artificial intelligence3 (AI) penetrates nearly every research discipline,

engineering domain, and human endeavor. Neurosymbolic AI systems traffic the backbone of

Internet activity4. Billion-parameter language models are used to generate

humanly-indistinguishable research-paper-quality content5,6. Deep reinforcement learning

approaches have even gone on to achieve superhuman-level performance7,8. The problem

domains which humans properly frame into information space, machine learning is often able to

master in complexity9, autonomy10, and criticality11. Consider briefly how vital those three

attributes are:

Complexity loosely refers to a spectrum of quantitative and qualitative measures

including algorithmic running metrics12, information-theoretic self-information and cross

entropy13, and compositional-emergent interactions14. Complexity analyses invariably come to

focus after local object-oriented reductions fail to model the characteristic behavior of a

not-so-reducible system.15 Of course, these are often the occasions where AI was already lifting

the previously human cognitive load like vaccine molecule synthesis16, CAD modeling17, and

autonomous driving18 and thus the complexity of AI solutions complements their problem

domain even more.

Autonomy (autos ‘self’ nomos ‘ruled’19) carries significant emphasis in the latter

self-driving example15, and more generally, AI system deployment beyond the spatial or

temporal reach of direct supervision accentuates the demand to establish their reliability,

stability, and robustness.15,20 Although standing as an open problem, autonomy naturally reveals

itself in various performance measures when testing AI systems on unseen data20, so this

property well characterizes a broad dimension of AI system analysis.
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Criticality. First as a thermodynamic metric, criticality measures the unique system

dynamics that occur when free energy remains uniform over the boundary of adjacent states21. As

biological22 and artificial neuronal networks11 exemplify, those unique dynamics include infinite

information processing capacity22,23, state evolution ‘on the edge of chaos’11, and maximal

sensitivity to information while maintaining robustness to a high dynamic range of

perturbations22.

Taken en trio, the above properties comprise an English-level summary over the toolkit

of architectural, objective, and training-paradigm principle and practice which machine learning

engineers apply in optimizing their systems. However, the application domains AI operates in are

inseparably interwoven within a larger social fabric, and the reader is aware that this unique

dimension of consideration has thus far been ignored. Likely, the term “criticality” initially

invoked a qualitative meaning related to “safety-critical”, “business critical”, and “mission

critical” systems, rather than the physical interpretation, yet as a self-taught machine learning

researcher, I have not given the former along with explainability, trustworthiness, fairness,

traceability, and the umbrella of AI safety due attention. My custom for the past two years to

browse arxiv.org at night and read the latest AI-related preprints usually judges content by the

cognitive load it reduces during research at day, and that work centers around chatbots24, deep

reinforcement learning agents, and visualization tools25 where safety has no clear impact.

Therefore, I took advantage of this assignment to consider the keynote address of AI Safety

2021.

The keynote speaker Dr. Simon Burton introduced AI safety from a system-level

perspective emphasizing that human engineers and users are a part of this system.15 Though the

obvious challenges to ensuring safe AI performance in autonomous vehicles and medical
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imaging technology may be partially alleviated by improving system design, the general point he

emphasized is that humans need to understand and stay within the framework limitations that

humans themselves create and recognize the complexity, autonomy, and critical nature of their

AI systems.15 For instance on 18 March 2018 in Tempe, Arizona, one of Uber’s self-driving

vehicles produced a deadly crash with a pedestrian pushing a bicycle. Immediately, the

autonomous vehicle received the blame.15 However, later analysis revealed that it had correctly

identified a pedestrian, but it did not maintain a stable representation of that obstacle to avoid. Of

course, even brief perception should be sufficient to raise flags and caution behavior, so the issue

was not as reducible as the first summary makes it.15 In fact, this vehicle was in a testing phase

with a human driver on-board who should have overridden control but was distracted.

Additionally, several management and engineering process issues were revealed that could have

prevented the incident.15 Finally, the state of Arizona was shown to not sufficiently regulate the

use of autonomous vehicles on public roads. Clearly, this AI safety problem was multivariate and

should have been justified by complexity, autonomy, and criticality aware perception and

action.15

Dr. Burton formalized a holistic model to inform engineers, management, and AI system

users of these safety issues.15 It recognized both design-time and run-time constraints on safety

with tacitly-defined acceptance criteria.15 In the former example, he expressed this criteria as

“each pedestrian within the critical range is correctly detected with a true positive rate sufficient

to confirm their position within any sequence of images in which the pedestrian fulfills the

assumptions.”15 His formulation appears to pin down a broad variety of objectives, but as Dr.

Burton reminded in the conclusion, “we’re not going to be perfect” and iterative safety

engineering is essential.15
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It is extremely difficult to prove AI system reliability as it operates in progressively more

general domains26, and is impossible in the most general case27,28. However, noting the speaker’s

comments, I see how important AI safety is to recognize, and appreciate the incentive this

assignment provided to inform my future work [1]. I plan on spending more time reading AI

safety-related papers including some encountered10,11,19,27,28 when researching via arxiv.org for

this assignment.

The continual evolution of AI in complexity, autonomy, criticality, and safety calls for

competitive personal development by human intelligence.29 With scientific integrity and

engineering perseverance guided by safety consciousness, AI can continue challenging the

cutting edge while maintaining a safe and benevolent impact.
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Appendix B: Endnotes

[1]: Currently the author is developing a multimodal, multi-paradigm deep unsupervised active

learning system Computatrum which interacts directly with a Ubuntu virtual machine connected

to the Internet. Please see the author note.

11


